‘e o* inghigll i

@7 DARALWANDUNAY

A pa dl il a

wloazdl huazi asdlec) wlSudl &b plazscwl
&, 15Yl polell du el dloll

wsodell il pudse - cugSIl Aol
> 3500 >

2¢,11 2w

P

2004

el

227 - 243

478894

wYliog Woxy

EcoLink

oSl d,k (- aguSIVl olowlsdl - olll olalsiwe
audazl dzo |

http://search.mandumah.com/Record/478894

Olgisl|

1ol

ol
HEWI N WS 9|
N[ JEVESN |

1 aoS>x0

1 S>Maodl o)l
gl
olxaall

:MD 38,
tSgixoll g9i
:0logleoll aclgd
' &aolgo

ol

Jbbgaxo Bzl gan> .doghioll > 2020 ©
LSy abgazo ,uiull Bga> geox Ul lale (il Bga> wlxol go g8soll Byl le sl a>lio 85kl 0ia
lgo Jio) aliws I ac putidl ol Lozl of Gl gioug asd (sazeill plaziwl sslal 038 aclb gl Jraz

oghaiall ,ls of yiidl Boa> Llsesl o wsbas urai Ly (g SIVI 4yl ol iVl


http://search.mandumah.com/Record/478894

Arab Journal of
Administrative Sciences

Merza H. Hasan

Kuwait University, Kuwait

Key Words

Integer Programming,
Facility Design,
Maximal Planar
Graph, Exact
Algorithm, Heuristic.

Introduction

____________________________________________|
2004, Vol. 11, No. 2, 227 - 243

FACILITY DESIGN PROBLEM:
A GRAPH THEORETICAL AP-
PROACH

Abstract

The facility layout problem is formulated in terms of a
graph theoretical approach. The solution attempts to find
a sub-graph from a given weighted complete graph such
that the sub-graph is planar and can be embedded on the
plane without any arc intersecting. It is weighted max-
imal, no additional arc can be added to the sub-graph
without destroying its planarity and it has the highest
sum of arc weights. In this paper a new 0-1 integer
programming formulation will be introduced and its
variants discussed for the facility design problem using
structural graph-theoretic properties. Bounding proce-
dures, based on Linear Programming (LP) relaxation,
will be presented. Moreover, a branch-and-bound heuris-
tic algorithm will be implemented using the LP bound
and a tree search method based on a set of three branch-
ing rules. The effects of the different branching rules on
the quality of the LP bounds will be investigated after
which the best tree-search implementation will be identi-
fied. Computational results show that optimal or near
optimal solutions can be obtained for practical size
problems.

G iven a complete undirected
weighted graph, G=(N, A,
W, F), where N is the set of nodes
(facilities), A is the set of arcs, W is the
set of positive weights associated with

arcs, and F is the set of faces. Each arc
k € A is associated with two end-

Submitted August 2003, accepted October 2003.

nodes, ¢ and j, and has a positive
weight w, representing a desirability
value for the two facilities (nodes) to
be adjacent. If G is not a complete
graph, the missing arcs can be added
arbitrarily at zero weights. A graph is

planar if it can be embedded (drawn)
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on the plane without any intersection
of its arcs. A maximal planar graph is
a planar graph, to which no additional
arc can be added without destroying
its planarity. The objective of the
weighted maximal planar graph
(WMPG) problem is to find a max-
imal planar sub-graph, =(N, 4,, W,,,
F,) with the highest sum of arc
weights, W(Gp) = > w,, where
Ap CA. KAy

In Figure 1, the weighted maximal
planar graph G, =(N, A, W;,) can be
represented by a set of nodes
N={1,..., 8} and the set of arcs
Ap={(14), (2,4), (3.4), (5.4), (6.4),
(7,4),..., (1,8)}. Each node of G, is
associated with one facility, while
node 8 is only a special case defining
the external area. Each arc of A, is
translated into a common wall
(boundary) between two adjacent-
end facilities in the block layout. It

can be seen that all the faces of are
triangular, i.e. each is bounded by
three arcs and determined by three
adjacent nodes. It should be noted
that the planarity is required for the
feasibility and optimality assured by
the maximally planar graph.

Applications of the WMPG pro-
blem are in the design of skeletons for
a family of facility design and location
problems, Domschke and Krispin
(1997). These include the layout of
facilities in modern manufacturing
systems, the layout and location of
electrical circuits in VLSI design,
(Hassan & Hogg, (1987), graph pla-
narization, Resende and Riberio,
(1997), and automatic graph drawing,
Montreuil and Ratiff, (1989), Al-Ha-
kim, (1991) and Junger and Mutzel,
(1993). The WMPG problem is
known to be NP-hard problem, Giffin
(1984). The proposed research works

Figure 1
A WMPG solution (b) and its block layout (a)
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are divided into heuristics and exact
methods with a few procedures for the
later one.

The heuristic algorithms for the
WMPG problem can be grouped into
classical heuristics and recent meta-
heuristics, Osman and Laporte (1996).
The classical heuristics include: Con-
struction heuristics with a planarity
testing, Moore and Carrie (1976); Car-
ries et al., (1978); Foulds et al,. (1985)
and Osman and Hasan (1997), Con-
truction Heuristics Without a Planarity
Testing, Foulds and Robinson (1976);
Eades et al., (1982); Green and Al-
Hakim (1985); Leung (1992); Boswell
1992 and Wascher and Merker (1997)
and Local Search Improvement Heur-
istics, Foulds ez al., (1985); Al-Hakim
(1991) and Glover, Pesch and Osman
(1995). Whereas, Metaheuristics for the
WMPG contains: Simulated annealing
and tabu search in Hasan and Osman
(1995); Greedy random adaptive search
procedures and periodic improvement
procedures, Barakeh (1997).

Exact algorithms were proposed
by Foulds and Robinson (1976). They
proposed a branch-and-bound algo-
rithm with planarity testing for ob-
taining an optimal solution to the
WMPG problem. The algorithm be-
gins by arranging the set of arcs in
descending order of their weights for
branching. For each arc, a penalty
value for not being included it in the

set of feasible solutions is computed.
The tree-search branches are created
using a dichotomy of including or
excluding an arc. The arc with the
least penalty is selected and then tested
for planarity before adding it to the
incumbent graph. If it is non-planar,
the branching arc is fathomed. The
algorithm continues until all arcs with
a penalty value less than that of the
latest incumbent have been consid-
ered. The last incumbent is then re-
ported as the optimal solution. An
optimal solution was reported for a
10-node graph instance solved by
hand. Recently, Junger and Mutzel
(1996) designed an exact branch-and-
cut algorithm with planarity testing
and using facet-defining inequalities
for a closely related problem, namely
the unweighted maximal planar
graph. The algorithm searches for
forbidden structures in a graph that
contains any sub-graph of the form K5
(a complete graph on five nodes) or
K33 (a complete bipartite graph on 6
nodes and each node has three inci-
dent arcs). These structures are used to
generate the facet-defining inequal-
ities (the cutting planes). The branch-
and-cut algorithm has been used to
find good approximate feasible solu-
tions (in many cases provably opti-
mal) for sparse and dense un-weighted
instances having up to 100 nodes.
However, when it was tested on
WMPG instances, only up to 10-node
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complete graphs and up to 20-node
with 20-percent density graphs were
solved to optimality.

Cimikowski (1994) introduced the
first exact algorithm using the tree
search procedure. He utilized heuris-
tics to obtain an initial lower bound
for the size of a maximum planar sub-
graph, and then he applied a sequence
of planarity tests to eliminate infeasi-
ble solutions. Let G=(N, A), where N
is set of nodes (facilities) and A is set of
arcs, which measures the desirability
of each facility to be adjacent to
another. Since the planar graph can
have no more than 3n-6 arcs, a graph
with fewer than 9 arcs are trivially
planar. Larger sized instances are
more difficult and complex. Three
sequential stages of branch and bound
search are introduced: breadth first,
backtracking, and best first solution,
to find set of sub-graphs for planarity
testing. At each stage the number of
sub-graphs processed are reduced
during the search.

The above procedures either exact
or heuristic rely on the graph planarity
testing to confirm its feasibility. The
literature indicates a few planarity
testing algorithms. Jayakumar et al.
(1989) described two O (n’) planar-
ization algorithms, based on the pla-
narity testing algorithm of Lemple
and Cedarbaun (1966). Chiba et al.
(1983) used a path-embedding heuris-

tic based on the planarity algorithm of
Hopcroft and Tarjan (1974), where a
path (P) is a sequence of connected
nodes. Note that P, denotes a graph
consisting only of a path with n-1 arcs.
A cycle (C)is a path with n arcs (closed
path). Using a depth first search, an
initial cycle is obtained in a graph G,
with some arcs deleted and then em-
bedded in the plane. The remainder of
G is then decomposed into disjoint
paths, and an attempt is made to
embed each path inside or outside
the cycle. If all paths can be em-
bedded, the graph is planar; otherwise
it is non-planar, the complexity is O
(| n || m |), where m is the number of
arcs and n is the number nodes. Gen-
erally, the depth first phase constructs
a spanning planar sub-graph of a
given non-planar graph by embedding
one node at a time, and, at each step,
adds the largest set of edges that does
not lead to a non-planar graph. The
second phase starts from a bicon-
nected spanning planar sub-graph
and constructs a maximal planar
sub-graph containing it.

Takefuji and Lee (1989) proposed
a heuristic using the separation of
computation into two phases. The
first phase involves devising a linear
permutation of the nodes of the input
graph, followed by placing them along
a line. The second phase determines
two sets of arcs that may be repre-
sented without crossing above and
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below that line respectively. They use
an arbitrary sequence of nodes in the
first phase and apply a parallel heur-
istic using a neural network for the
second phase.

Cimikowski (1992) proposed a
heuristic based on finding, for each
bi-connected component of a non-
planar graph, a pair of arc-disjoint
spanning trees whose union is planar.
Although the author gives no compu-
tational results, the main interest of
this approach is that, under certain
conditions, the number of arcs of the
generated planar subgraph is at least
2/3 of the optimum.

Caietal., (1993) proposed another
heuristic based on arc embedding. The
initial path is obtained in the same way
as the initial phase of Chiba et al.,
(1983). While the second phase, used
an arc embedding rather than a path
embedding. The complexity of their
algorithm is O (m log n), where m is
the number of arcs and n is the number
nodes.

Goldschmidt and Takvorian
(1994) introduced an improvement
approach for Takefuji and Lee
(1989). In the first phase, they attempt
to use a linear permutation of the
nodes associated with a Hamiltonian
cycle of G. Two strategies are used: (i)
a randomized algorithm that almost
certainly finds a Hamiltonian cycle if
one exists, and (ii) a greedy determi-

nistic algorithm that seeks a Hamilto-
nian cycle. In the latter, the first node
in the linear permutation is a mini-
mum degree node in G. After the first
k nodes of the permutation have been
determined, say, n;, n,,...., n; the next
node ny, . ; is selected from the nodes
adjacent to n; in G, having the least
adjacencies in the sub-graph G, of G
induced by N\ {n,, n,...., n;}. If there
is no node of Gy adjacent to n; in G,
then n; . ; is selected as a minimum
degree node. The linear permutation
obtained in the first phase leads to the
size of the planar sub-graph found in
the second phase of the above heur-
istic. Moreover, it is not clear that the
permutation produced by the greedy
algorithm is the best. The total com-
plexity of this heuristic is O (max {n
log n?, m}).

Poutre (1994) introduced an incre-
mental heuristic for graph planariza-
tion. The algorithm starts with an
empty graph, and then adds arcs
arbitrarily and one at a time, disre-
garding if it causes non-planarity. The
remaining arcs form a maximal planar
sub-grpah. After each arc addition, a
planarity test is performed using an
incremental planarity testing method.

Cimikowski (1995) preformed an
empirical evaluation of heuristics for
the graph planarization problem. Sev-
eral heuristics were tested on a large
and comprehensive set of problems.
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These include: random graphs with
unknown maximum planar sub-graph
size; non-planar graphs containing a
maximum planar sub-graph of size,
3n-6; and random graphs. Cimikows-
kis experiments show that the two-
phase heuristic of Goldschmidt and
Takvorian (1994) markedly outper-
forms the previous classical heuristics
in terms of solution quality, although
its running time makes it impossible
for very large graphs where a mini-
mum arc arc deletion for G is pro-
posed to turn the graph into planar.

Last, Resende and Reiro (1997) pro-
posed a new method for graph planar-
ization based on GRASP; an approach
that relies on graph reduction.

It can be seen from the literature
survey that there are few exact solu-
tion methods for solving the GP pro-
blem. They can only solve small sized
instances due to the lack of good
bounding procedure. A B&B tree
search procedure with upper bound
obtained from the relaxation of new
Integer Linear Programming (ILP)
formulation for the GP problem will
be presented next. The motive is to
develop good exact methods for this
challenging practical problem.

Integer Linear Programming
Formulation (ILP)

In this section, a new integer linear
programming formulation for the GP
problem is introduced. It is based on

the graph theoretic properties of the
weighted maximal planar sub-graph
solution of a complete graph. Hence,
such properties will be presented first,
followed by an appropriate modifica-
tion to derive a GP formulation.

Graph Theoretic properties

Given a complete graph, G= (N, A,
W) where N= {1,.... , n} is the set of n
nodes, A= {l,...,a} is the set of undir-
ectedarcs, W= {w, /w, > 0, Vk€a}
is the set of arc weights. Let G, = (N, 4,
W) be the weighted maximal planar sub-
graph solution of G defined by its set of
arcs 4,={o ,...,ap}, and its set of trian-
gular faces F,={f,...,f;}; then, we have
the Eulers formula (n-p+¢=2) and the
following implied properties are valid for
anyn > 3.

a) For any given planar graph,
p<3n-6andp = 3n-6 when it
is maximal.

b) If G, is a bipartite (connected)
graph then the number of trian-
gular faces t = 2n - 4.

c) G, is a 3-node connected graph,
i.e., the number of incident arcs
(degree of node i) of any node i
must be greater or equal to three.

From the above properties, the
combinatorial nature of the weighted
maximal planar graph can be illu-
strated from the need to find a set of
A, of (3n-6) arcs out of a total of

n(n—1)

number of arcs {a:T]} and
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a set F, of (2n-4) of triangular faces
out a total number of faces

n(n—1)(n—-2
="0=Dl=2)

ity and maximally requirements. For

1 that satisfy planar-

more details on graph theory termi-
nology and details, refer to Chvatal
(1969) and Harary (1971).

Graph Planarization Formulation

Let GP=(N, AP), where N is the
set of n nodes, AP is the set of m arcs
and WMPG is a complete graph
where N is the set » nodes and A is

n(n—
the set o = arcs. Therefore,

the main difference between GP and G
isthat AP C 4i.e. m < a. In order to
convert GP into WMPG instances,
the following modifications are intro-
duced. First, the set AP is augmented
by a set of artificial missing arcs AA
such that A=AP U AA.

Second, the weights for the two
subsets are set as follows. Let

M  Ifanarck € AP
w, =
k 1 If an arc k € AA
where M is a large number, say 100.
Now, we can proceed to an ILP
formulation for the GP problem, as-

suming the modified weighted graph
of GP is denoted by G=(N,A,W).

For simplicity, let us denote a
triangular face fj by j, and then using
the above theoretic properties, the ILP

formulation of the GT problem is as
follows:

Variables definition:
1 If an arc k is in the GP solution, k=1, K,
“7 0 Otherwise

]

| 1if a triangular face j is selected, j=1,K.f
| 0 Otherwise

Constants definition:
L If an arc k belongs to triangular face j,
571 0 Otherwise

Then, the Integer Linear program-
ming formulation is:

Maximize Z = Y w, X, (1)
k=1
Subject to:

/
YooY, =2X, k=1« 2)
Fria

S X, =3n—6 3)

k=1

Y X, >3

kel

Vie, N, andi= N\{i
{ i€ and i = N\{i} @

I=1{(,0,1€7).

X, €(0,1),Y,€(0.),Yk € AYj € F (5)

The objective function (1) is to
maximize the total sum of weights
for the selected arcs in the associated
GP solution. Constraints (2) state that
every arc belongs to two triangular
faces, property (b). Constraint (3)
indicates that the total number of arcs
is equal to (3n-6), property (a). Con-
straint (4) ensures that the GP solution
is 3-node connected graph, i.e. each
node must be connected to at least
three other nodes (degree of three)
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property (c). Constraint (5) are the
integral restriction.

The Branch and Bound Tree
Search Method

The branch and bound (B&B) tree
search procedure developed for the
WMPG problem is used to find the
optimal solution for the GP problem
using the modified weighted maximal
planar graph associated with GP.

In general, the B&B method for the
GP problem starts with a modified
weighted maximal planar graph in-
stance, and the corresponding integer
linear programming relaxation is used
to obtain good upper bounds. Since
the planarity property is embedded in
the formulation, no planarity testing
procedure is applied within the B&B
method. The B&B procedure con-
tinues searching until an optimal solu-
tion is found. The B&B tree search can
be used to derive the following ap-
proximate solutions (heuristics) for
the GP problem: the first feasible
heuristic and the divide and merge
heuristic.

First Feasible heuristic

The First Feasible (FF) heuristic is
based on a branch and bound tree
search without further backtracking
to prove optimality. The first feasible
solution found by the branch and
bound method is the heuristic solu-

tion. It satisfies all ILP formulation
model constraints, but it is possibly
not optimal. The aim of this approach
is to find a good feasible solution with
minimum time computation effort.
Most of the effort of B&B tree search
is to prove whether a given solution is
optimal by backtracking.

Divide and Merge Heuristic

The divide and merge (D&M)
heuristic is considered a new strategy
for solving GP problem. It is based on
the branch and bound tree search; the
main thrust of the approach is to
reduce the problem into sub-problems
of manageable size. The sub-problems
are then combined and merged to find
asolution to the original problem. The
D&M heuristic is based on three
stages, namely graph division (decom-
position), graph optimization and fi-
nally graph merger by inserting the
missing arcs to obtain a feasible solu-
tion to the original problem. The steps
of D&M procedure are described be-
low:

(a) Graph Division

Previous studies introduced differ-
ent graph division strategies where the
weights are assigned to each arc to
solve the WMPG problem. But the
weights are neglected to solve the GP
problem. In this case, we divide the GP
graph randomly into two and three
sub-graphs G; of equal sizes.
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(b) Solving Stage

A complete graph is required to
solve each sub-graph G; by the pro-
posed ILP formulation model. G; is
sparse; therefore, additional arcs are
introduced to generate a complete
graph on each G, The sub-graph G;
will then be solved optimally (G p;) by
using the B&B tree search procedure.

(c) Merger Stage

The optimal solution generated by
solving B&B tree search on each
sparse sub-graph G; is to obtain Gp;.
Each G p; solution is a maximal planar
graph. It should be noted that Gp/s
are disconnected sub-graphs; there-
fore, we have to connect them by
inserting the missing arcs and keeping
the graph planner.

The optimal sub-graphs
Gpi,....,Gpg are initially disconnected.
Any two Gy, and Gy, can be connected
by considering any face f; from Gp; and
any f; € Gp;, and adding the six missing
arcs if possible. The addition of the
missing arcs will turn the graph into a
maximum planar. If there is no such
pair fi and f; with linking arcs, another
pair is considered until the sub-graphs
are connected.

In order to reduce the computa-
tional effort of the B&B method to
reach to a good solution, next an LP
based heuristic to solve large instant
problems is presented.

Linear Programming Based
Meta-Heuristics

In this section, a meta-heuristic
technique for solving the GP problem
is presented. It is based on solving
iteratively Multiple Linear Program-
ming relaxations of Integer values (M-
LPI) to obtain a reduced sub-graph
from which a GP is obtained. Let
G=(N, A) be a complete graph with
N as a set of nodes and A a set of arcs
with m real arcs and (n-m) artificial
arcs. The M-LPI heuristic works as
follows.

Let Ar be the set of arcs to be
found. Initially Ay is an empty set. At
iteration 1, the M-LPI starts by sol-
ving the LP-relaxation model to ob-
tain a set of arcs Ay with their variable
values in the upper bound solution as
one. Then, the set of arc A;is added to
Ag. The M-LPI heuristic repeats the
above iteration for a number of times
to obtain a reduced sub-graph
Gr=(N, Ag). Finally, GRASP is
applied to Ay to obtain a GP solution.

The following steps explain the M-
LPI heuristic.

Step 0: {Initialization}:
1) Set Agr =0 set of reduced arcs
2) i=0
3) Let A; be the set of arcs with
value of one in the LP relaxation
Step 1: {LP relaxation}:
1) i=i+l
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2) Solve the LP relaxation of G
3) Identify the set of arcs with
value of 1 in A
Step 2: {Updating}:

Update the reduced sub-graph,
AR = AR @] Ai.

Step 3: {Stopping criteria}:
If {the size of arcs in A is equal to
m} Stop Else
Set W =1 forall k € Ag

Go to step 1
Endif

Step 4: { Planarity testing}:
Apply GRASP to G = (N, AR)

Note that imax value depends on
the size of the instance being solved.
Normally a value of imax=4 was
used.

Computational Experience

The results of the proposed algo-
rithms are coded in FORTRAN, run
on alaptop Pentium I1, 400 MHZ with
128 MB RAM and executed using
FTN77 compiler. CPLEX version
6.0 is used for solving the linear in-
teger-programming (LIP) model. A
set of instances used by Resende and
Ribeiro (1997) and described in Gold-
schmit and Takvorian (1994), is con-
sidered for testing the proposed
algorithms. Tablel shows the problem
name, number of nodes, number of
arcs, branch-and-bound (B&B) solu-

tion, first feasible solution (FF), divide
and merge (D&M) solutions and the
multiple linear programming relaxa-
tions (M-LPI) solutions. The M-LPI
column is divided into two sub-col-
umns after instances Gi,. The first
part of M-LPI column contains the
solution for G, - G, instances of sizes
up to 45 nodes. Since the M-LPI
heuristic uses GRASP for planarity
testing, a maximum number of 50
GRASP iterations is performed.
While the two sub-columns contain
two sets of solutions for the G5 - G
instances of sizes varying from 50 to
150 nodes, GRASP is run for a max-
imum number of 50 iterations and
10000 iterations in the first and second
column, respectively.

The results represent the maxi-
mum number of planar arcs obtained
by different algorithms. A number of
observations can be made from the
results in Tablel. First, we could solve
up to 50 nodes by the branch-and-
bound algorithm. It shows that, even
disregarding the weights in a sparse
graph, the WMPG and PG problems
remain combinatorially very hard to
solve optimally by the B&B algorithm
for large-sized instances. Second, we
could not solve more than 50 nodes by
the FF heuristic due to the large
computational effort needed for larger
sizes. Third, the other two D&M and
M-LPI heuristics could solve all the
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instances. These heuristics obtain
good solutions. The D&M heuristic
performs very well for instances up to
100 nodes, where the sparse graph is
divided into two independents sub-
graphs. It did not perform well in the
instance of 150 node size, because the

graph is divided into three indepen-

dents sub-graphs. Fourth, it can be
seen that M-LPI heuristic is the best
performing algorithm. However, its
quality of solution depends on the
number of iterations used by GRASP.
The larger the GRASP iteration num-

ber, the better the solution.

Table 1
Comparisons of B&B, F.F, D&C and M-LPI Solutions
with Others

Problem  Nodes Arcs 3n-6 B&B F.F* D&M M-LPI

Gl 10 22 24 20 20 - 20

G2 10 24 24 24 21 - 24

G3 10 25 24 24 22 - 24

G4 10 26 24 24 21 - 24

G5 10 27 24 24 A 24

G6 10 34 24 24 2 - 24

G7 25 69 69 69 60 60 69

G8 25 70 69 69 60 62 69

G9 25 71 69 69 61 62 69

G10 25 72 69 69 62 68 69

Gl11 25 90 69 68 59 66 68

GI12 45 85 129 82 77 80 82
Average 19.17 51.25 51.50 47.17 41.83 66.33 47.17

Iteration
50 10000

G13 50 367 144 138 104 135 127 133

Gl4 50 491 144 144 110 140 131 141

GI15 50 582 144 144 112 142 134 142

Gl6 100 451 296 ---- 184 188 194

G17 100 742 296 ---- 228 208 236

G138 100 922 296 ---- 224 231 244

G19 150 1064 444 ---- 288 287 306
Average  85.71 659.86 252.00 142.00 108.67 191.57 186.57 199.43
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Table 2 shows a comparison of solu-
tions between B&B, FF and M-LPI with
GT of Goldschmidt and Takvorian
(1994), RR of Resende and Ribeiro
(1997) and JM of Junger and Mutzel
(1996) heuristics. The column under M-
LPI heuristic is divided into two sub-

columns for Gi3-Gj9 as explained in

Table 1. From Table 2 it can be seen
that the M-PLI heuristic is able to
produce the same optimal solutions
generated by the B&B algorithm and
the JM branch and cut approach. This
result ranks the M-LPI heuristic first
among all other heuristics on this set of

instances of sizes up to 45 nodes. On

Table 2
Comparisons of B&B, F.F, D&M and M-LPI Solutions
with Others

Problem GT RR JM B&B F.F* D&M M-LPI

Gl 20 20 20 20 20 - 20

G2 21 24 24 24 i 24

G3 21 24 24 24 22 - 24

G4 21 24 24 24 ) 24

G5 21 24 24 24 21 - 24

G6 22 24 24 24 22 - 24

G7 60 69 69 69 60 60 69

G8 60 69 69 69 60 62 69

G9 59 69 69 69 61 62 69

G10 59 69 69 69 58 68 69

Gl1 62 67 68 68 59 66 68

GI12 80 82 82 82 77 80 82
Average  42.17 47.08 47.17 47.17 42.17 47.08 47.17

Iteration
50 10000

G13 131 135 125 138 104 135 127 133

Gl4 136 143 133 144 110 140 131 141

Gl15 142 144 138 144 112 142 134 142

Gl16 180 196 187 ---- 184 188 194

G17 219 236 213 - 228 208 236

G138 237 246 223 ---- 224 231 244

GI19 197 311 290 - 288 287 306
Average 177.43 201.57 187.00 142.00 108.67 191.57 186.57 199.43
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large-sized instance Gi3 - Gyo, the fol-
lowing can be observed. The results of
M-LPI and D&M heuristics are better
than that of GT and JM heuristics.
When the number of GRASP iterations
isincreased from 50 to 10000, on average
the solution quality of M-LPI increased
from 186.57 to 199.43. For this set of
instances it seems that GRASP per-
formed slightly better than the M-LPI
heuristic in terms of solution quality.

However, the CPU times of the
compared heuristics are reported in
Table 3. The CPU times for GT and
RR heuristics are reported until the
best solution is found and not until
they stop. They are executed on a
Silicon Graphics Challenge machine,
with 250 MHz and M4400 processors.
The JM heuristic is run on SUN
SPARC 10/41 machine. Using the
CPU benchmark reports of Kennedy
and Patrick (1998) and Dongarra and
Jack (2002), the following speed is in
terms of Mflop/s, the rate of execution
for millions of floating-point opera-
tions completed per second, as fol-
lows. The SGI Challenge 250 MHz,
Intel Pentium 400 MHz and SUN
SPARC 10/41 have 32, 86 and 23
Mflop/s respectively, i.e. the Intel
Pentium 400 is 2.68 and 3.73 times
faster than SGI Challenge and SUN
SPARC 10/41 respectively. Looking
at the adjusted average CPU time, it
can be seen that RR is taking more
time on the average than any other

heuristic. Our M-LPI uses almost half
the RR CPU time and produces solu-
tions that are less than 1% on the
average. In addition, we are reporting
the total time rather than the time to
the best solution, which is reported by
RR. The huge saving is due to good
graph reduction in our approach.
However, the CPU reduction has re-
sulted in a slight loss in solution
quality, but would allow solving large
instances better.

Conclusion

The WMPG problem known as a
graph planarization problem (GP) has
been considered to solve the facility
design problem. The drawbacks of ILP
models proposed by different authors
for WMPG were modified to obtain a
new formulation for the GP problem.
A new mapping between a GP instance
and a corresponding WMPG instance
is proposed. This mapping has enabled
us to use the B&B tree search procedure
of the WMPG problem. Optimal solu-
tions for instances up to 50 nodes have
been obtained for the GP instances in
the literature. Moreover, three differ-
ent heuristics and meta-heuristics have
been introduced to solve large GP
instances. The first B&B tree search
with stopping at first feasible (FF)
solution, divides and merge (D&M)
and multiple LP relaxations (M-LPI)
heuristics has been implemented on
large GP instances. The computational
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results show that the M-LPI heuristic efforts on a set of benchmark instances.
was ranked the best heuristic among all A hybrid procedure between simulated
heuristics in the literature in terms of annealing and tabu search can be con-
solution quality and computational sidered for the future study.

Table 3

Comparisons of B&B, F.F, D&C and M-LPI CPU times
with Others

Problem GTb RRb JMec B&Ba F.Fa D&Ma M-LPIa
Gl 0.01 0.0 0.3 1.2 1.2 - 0.0
G2 0.00 0.0 0.1 1.8 08 - 0.0
G3 0.01 0.0 0.0 1.1 09 - 0.01
G4 0.00 0.0 0.5 1 08 - 0.0
G5 0.01 0.1 0.1 1.1 09 - 0.01
G6 0.02 0.1 0.2 1.09 08 - 0.01
G7 0.08 10.3 0.1 1258 685 2.8 2.21
G8 0.00 10.5 0.1 1136 692 33 1.22
G9 0.01 18.5 0.6 1214 771 2.9 3.35
G10 0.0 1.2 0.6 1416 583 3.6 2.63
Gl1 13.3 1.0 0.6 1894 674 3.2 4.54
Gl12 0.6 1.0 10.2 5802 3435 8.6 2.24
Average 1.17 3.56 1.12 1060.61  570.45 4.07 1.35
Iteration
50 10000
G13 8830 6830 2523 11.6 6154 508.2 1146.7 1000.0
Gl4 9994 7085 2618 9.93 4864 84.2 136.7 1000.0
Gl15 9163 7172 2557 8.14 3655 51.2 225.4 1000.0
Gl6 - 16812 17.4 8014 2481.9  28848.6  1000.0
Gl7 e 17989 19.3 9715 47725.2  10805.6  1000.0
GI8 e e 17182 18.6 8672 226.6 83508.1 1000.0
Gl19 - e 28629 23.4 9318  224113.8  97939. 1000.0

Average 9329.00 7029.00 12615.71 15.48 7198.86 39313.01 31801.44  1000.0
Avergaed 9329.00  7029.00 12615.71 15.48 7198.86  14669.0  31801.4 268.0

a: CPU time on Pentium, Intel 400 MHz

b: CPU time on SGI Challenge 250 MHz

¢: CPU time on SUN SPARC 10/41

d: CPU itme converted into an equivalent 400 Pentium Intel 400 MHz.
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